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An explicit formula is given for the overall mass-transfer coefficient between a steady liquid 
stream and a small active part of a solid surface in the stream. This is a generalization of the 
well-known Lighthill formula to the form applicable for any velocity field and any shape of ~he 
active surface. Its use is demonstrated for the circular electrodiffusion probes under various kine
matic conditions. 

Leveque! developed his formula for estimating heat transfer coefficients on the 
assumption that the velocity gradient at the transport-active surface, q, does not 
vary along the surface. Lighthill2 generalized this approach for any planar flow by 
considering longitudinal variation of q. A further generalization was given by 
Newman\ who has analyzed two-dimensional electrochemical mass-transfer pro
blems including the axisymmetric transport configurations. It is shown in the present 
paper that an analogous approach can be used for a general three-dimensional velo
city field and for any shape of the active part of a solid surface. by considering the 
surface distribution of the v~ctorial velocity gradient q as the starting kinematic 
information. 

GENERALIZED LIGHTHILL TRANSFORMATION 

In the present paper, we aim at the calculation of the diffusion flux J of an active 
component (a depolarizer) from the bulk of a liquid stream to an active part of 
a solid surface (an electrode), within the approximation of concentration boundary 
layer (the diffusion-layer approximation). The following three simplifying assump
tions are typical for this approximation: 

1. The total volume, occupied by the streaming liquid, can be divided into two 
parts: the bulk and the diffusion layer. The bulk consists of a fresh solution with 
a constant initial concentration of the depolarizer. The depolarizer concentration 
changes appreciably only across the diffusion layer close to the electrode surface. 
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2. The diffusion layer thickness is small enough in comparison with any charac
teristic length parameter of the velocity field inside the diffusion layer (the curvature 
radii of the surface itself, the surface streamlines, the velocity profiles - approxima
tion for high Schmidt numbers.) 

3. The diffusion fluxes, para\1el to the electrode surface, can be neglected in com
parison with the corresponding convective fluxes (approximation of high Peelet 
numbers). 

Such conditions generally cannot be achieved in typical un its for heat- and mass
-transfer operations, like heat exchangers, agitated vessels, or absorption towers, 
where the interface nearly overa\1 coincides with the transport-active surface. On the 
other hand, the regime of the concentration boundary layer is typical for all convec
tive probes used in the electrodiffusion diagnostics of flow4 - 6. 

Let us consider now a steady flow along a solid surface with the given surface 
field of velocity gradients. Assuming a non-permeable surface and no-slip conditions, 
the surface velocity gradient is fu\1y represented by the vectorial field q of the vdo
eity gradients at wall which are locally complanar with the surface. It is useful to 
introduce the notion of surface streamlines. These oriented spacial curves lay in the 
surface and q gives their directional field. 

The special orthogonal curvilinear coordinate system (.:, x, e) can be introduced 
for mapping the given surface vectorial field q into the three-dimensional Euclidean 
space, see Fig. I. 

The .::-coordinate gives the distance to the solid surface E. In particular, ::: = 0 

z 

iN 

FIG.l 

Surface kinematics and canonical coordinates (z, x, e) 
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corresponds to the solid surface whose part is occupied by the electrode under 
consideration. 

The e-coordinate is chosen in such a way that the curve (e = const, Z = 0) 
corresponds to a surface streamline (i.e., the e coordinate is in every point of the 
area normal to the surface streamlines). 

The x-coordinate follows the direction of the streamlines: it grows in the local flow 
direction q and dx gives the differential length of a surface streamline. 

The choice of the starting points, x = 0, on the individual streamlines depends 
both on the flow kinematics and electrode geometry. Surface streamlines can begin 
either on the electrode territory, E, in the so called critical forward points, q = 0, 
or somewhere outside the electrode territory, N. In the first case, the starting point, 
x = 0, is placed into the critical point. In other cases, it corresponds to the point 
of intersection of a surface streamline and the forward boundary to the electrode. 

As the common conditions of no permeation and no slip are considered, the velo
city field close to the surface, Z --+ 0, can be represented by the following asymptotic 
relations: 

Vx ~ q(x, e) z, 1'9 ~ 0, Vz ~ -A(x, e) Z2 . (1) 

The metrics of the coordinate system (z, x, e) is characterized by the expression 
of a differential area d W in the electrode surface E, see Fig. 1: 

d W = J1.(x, e) de dx . (2) 

Under this assumption, the continuity equation for an incompressible liquid inside 
the diffusion layer can be written in the following form: 

(3) 

the e-component of velocity being zero by definition. The longitudinal velocity 
field is characterized completely by the surface field of the magnitude of the velocity 
gradient q = q(x, 8). The normal velocity component then results from the conti
nuity equation, as anticipated in Eqs (l): 

(4) 

It should be repeatedly noticed that these expressions hold correctly only within 
the diffusion-layer approximation, assuming that the diffusion thickness J is thin 
enough in comparison with any other characteristic length scale of the flow under 
consideration. Within the corresponding approximation, the equation of steady 
convective diffusion can be written in the following form: 
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(5) 

and integrated with the following boundary conditions: 

C/z=o = 0, clz=oo = co' (6a,b) 

The essential analytic feature of this three-dimensional parabolic boundary-value 
problem is the absence of the streamline coordinate e in an explicit form. This makes 
possible to find the explicit similarity solution on a given surface streamline, e = 
= const. The similarity transform with e as a constant parameter, 

C(w) = c(z, x, e)/co, w = z/8, 8 = 8(x, e) , (7a,b,c) 

results in separating the original three-dimensional system into two ordinary bound
ary-value problems, for C = C(w): 

C" + 3Ul\,2C = 0, C(O) = 0, C(oo) = 1, 

and for 8 = 8(x, e): 

lim(qO")'/28 = o. 
x--+O 

(Sa,b,c) 

(9) 

(10) 

The initial condition (10) implicitly includes the assumption of the presence of solu
tion with the inital concentration Co outside the diffusion layer. If the entrance 
point x = 0 lies on the electrode boundary and is a regular one, q > 0, then it fol
lows 8 -4 0 for x -4 0 frorri the condition (10). If a forward critical point (q = 0, 
.. j > 0) lies on the electrode territory, ,the condition (10) is compatible with a finite 
initial thickness of the diffusion layer, in accordance with the existing analyses for 
the convective diffusion in a neighbourhood of the forward critical point (or line). 

There is a free numerical coefficient 0" which joints the both ordinary differential 
equations (S, 9). If the choice of (f is made implicitly by introducing the additional 
normalizing condition 

C(O) = 1 , (Sd) 

then (5 becomes identical with the Nernst diffusion thickness: 

(11) 

Both the ordinary boundary-value problems can be solved in quadratures. The 
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resulting general expression for similarity concentration profiles is 

C(w) = J; exp (-us 3 ) ds/Jr;' exp (-us 3 ) ds . (12) 

The value of u follows from the normalizing condition (8d): 

1 = Jr;' exp (-us 3) ds = u- 1/3 r(4/3). (13) 

The Eq. (9) can be rearranged by using the identities 

qc53 [o", In (15) + to", In (M)] = 

= qI/2p.-t/2c520,,(qI/2Il1/2c5) = (qp.3)-1/2 V",((ql/2p. 1/2c5)3) (14) 

and then integrated with the initial condition (10) to give: 

[ 9uDQ J1 /3 15 x e -
(, ) - 312 3'2 ' 

q II' 
(15) 

where 

(16) 

The last but essential step in the analysis is to find an expression for the macro
scopic diffusion flux J w over a given part (a segment) Wofthe electrode E. From the 
common definition of the diffusion fluxes across a solid boundary it follows: 

Jw/(coD) = Jw (5- 1 dW= 

= J8EW (J~~i:~ 15- 1(.\. e) p.(x, e) dx] de. (17) 

with Xi' Xo corresponding to the input and output points on the surface streamlines. 
respectively. 

By applying the obvious identities, 

(18) 

it is possible to simplify the general surface integral (J 7) to the form of a double qua
drature: 

JW/(COD2 J) == xw. (19) 

x = --- [Q2 /3(X (e). e) - Q2 Yx--(e\, e)] de . 31/3 f -
w 2r(4j3) 8EW 0 I , 

(20) 
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The newly introduced transport coefficient Xw does not depend on the depolarizer 
concentration Co nor diffusivity D, and therefore it is a purely hydrodynamical 
quantity. For the total flux to the electrode, W = E, the formula (20) can be simplified 
slightly, as it is Xo = 0, and Xi = L( e) corresponds to the total lengths of surface 
streamlines over the electrode territory: 

(21) 

The suggested general algorithm IS illustrated 111 the following text by glVlllg 
several simple examples. 

USE FOR SPECIAL CONFIGURATIONS 

Strip Electrode Placed Aslant in Simple Shear Flo\\' 

This idealized flow configuration is shown in Fig. 2. The velocity field in the recti

lincar coordinates (x l' X2' z) is given by 

(22) 

q 1 = q cos un, q 2 = q sin (II) . 

Thc territory of an infinite strip electrode is bounded by two parallel straighl lines 
.\" I = 0 and x I = II l' The longitudinal coordinate x is given unambiguously, x = 

r-

N' 
.c 

lie;. 2 

Strip electrode in simple shear now 
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= XI/COS (13), but the streamlines can be identified in various ways, B = x 2 /b, with 
a free choice of the positive constant b. It follows from the identities dW = Jl. dx . 
. dB = dx I dx 2 that the metric coefficient Jl is constant over the whole electrode 
surface. It = b cos (13). The lengths of all the streamlines on the electrode territory 
are the same, Xo = hi/cos (13), and the result Q(xo) = q1/2(b cos (13))3/ 2 (ht/cos (13)) is 
obviom. The mean flux on the electrode can be now c:l\culated according to Eq. 
(21), with f..B = h2lb: 

--f:' --- = f..B_ [Q(xoWi3 = h21b [bq l3 COSI!3 (fj) hi!3] = (ql/h 1)1/3. 

CoD -I1 lh2 111112 I1lh2 

(23) 

The final result is identical with the well-known Leveque's formula: the resulting 
flux on the strip electrode depends only on the strip width, hi' and on the q ccom
ponent of vectorial velocity gradient which is perpendicular to the strip edges. The 
alternative way of obtaining the result (23) consists in neglecting the convective 
fluxes duc to the 1'2-velocity component. This is substantiated by the assumed planar 
symmetry of the concentration field at the infinitely long strip electrode, which results 
in thc formal assumption dc/dx2 = 0. 

Circular Electrode in Simple Shear Flo\\' 

The velocity field and rectilinear coordinates XI' X2 are the same as in the previous 
example, assuming q 2 = 0, see Fig. 3. By choosing dx = dX 1 and B = X2' it is Jl = 1 
and hence Q(x) = q1!2,_ For completing the calculation, it is necessary to know the 

R 

FIG. 3 

Circular electrode in simple shear flow 
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lengths of the individual streamlines on the electrode territory, L( 8) = 2 J( R2 - ( 2). 

Then the well-known result4 - 6 is obtained in a straightforward way by applying the 
general formula (21): 

(24) 

Analogous calculations for the various radial segments of a circular electrode are 
given both for the simple shear flow 7 and a class of two dimensional flows 8 . 

Circular Electrode in Cone-and-Plate Viscometric Flow 

The cone-and-plate viscometric configuration, see Fig. 40, is popular among rheo
logists6 , as it produces the homogeneous field of shear rates, q ::::; Q/rx. It can be useful 
for electrodiffusion calibration measurements, as well. 

FIG. 4 

Circular electrode in cone-and-plate (a) or 
torsional (b) flow 
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The surface streamlines are concentric circles. In the polar coordinates (z, r, <1') it 
can be written dx = r d<1', de = dr, i.e. Jl. = 1. For the circular electrode of the 
radius R and distance PR between the centre of the electrode and the axis of flow 
symmetry. the. lengths of individual streamlines on the electrode territory can be 
found from simple trigonometry considerations: 

( t2 + p2 1) L = 2r<1' = 2Rt arccos , 
2pt 

(25) 

where t = rJR. By substituting this result into the starting formulas (16) and (21) 
it follows Q = q 1/2 L{t) and 

(26) 
with 

F(p) = - t arccos dt . 121/ 3 1 f'J+ 1 I (t2 + p2 - 1)J2/3 

nr( 4/3) 2 fJ _ I 2pt 
(27) 

For p ...... 00, the integral in Eq. (27) reduces to 2 g (1 - W 2)1/3 dw and the formula 
(26) gives the well-known result for the circular electrode in simple shear flow, 
F( ex:» = 0·68660. For any p ~ 1, the correction factor F(P)/F( ex:> ) can be represented 
with an acceptable accuracy by the empirical formula 

F(~l = 1 - 0'0145tr2[1 - 0·4 (1 _ 1/P)1/2] • 
F( (0) 

(28) 

In particular, it is obvious from Eq. (28), that the position of the electrode in the 
cone-and-plate viscosimeter has nearly negligible effect on the total diffusion flux. 

Circular Electrode in Torsional Viscometric Flow 

The disk-disk rotational viscometer, see Fig. 4b, produces the viscometric torsional 
flow field with the shear rate q proportional to the radial distance r to the axis of 
rotation, 

q = Qr/h = (QR/h) t. (29) 

With this difference, the situation is analogous to that considered as the previous 
example. By using the same notation, it is Q(t) = ql/2(t) L{t), and the final result 
can be read as follows 

(30) 
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with 

G(P) = -- t arccos dt . 121/ 3 p- 1/3 fP+ 1 [ (t2 + p2 - 1)J2/3 
nr(4j3) 2 P-l 2pt 

(31) 

In the asymptote P ~ 00 it is G( (0) = 0·68660 and the result (30) becomes identical 
with the formulas for the circular electrode in simple shear flow, the local shear rate q 
being evaluated at the electrode center. 

Circular Electrode in the Forward Critical Flow Region 

The axisymmetric velocity field in a proximity of the forward critical point can be 
expressed by the formulas3 

Vr = Arz, Vz = -tAz2 , (32) 

containing the single kinematic constant A. Here, the angular coordinate iP can be 
identified with the streamline coordinate, e = iP, the radial coordinate r with the 
longitudinal one, dx = dr. The metrics is then identical with that for the polar 
cylindrical system, JL(x, e) = r. 

Two different transport regimes should be distinguished. In the case P < 1, the 
critical point r = 0 lies inside the electrode territory. All the surface streamlines 
begin in the critical point and therefore x = r. Then it holds q = Ax, Q = (Aj9)1/2 x3, 

and the following expression can be developed in an obvious way: 

(33) 

If the electrode is placed axisymmetrically with the velocity field, it is L( e) = R, 
and hence J~1t L2( e) de = 2nR2. The same relation holds even for eccentric position 
of the electrode, if the critical point lies inside the electrode territory. The final result 

(34) 

is identical with the well-known Levich formula for the rotating disk electrode3,s,6, 

where A = O· 510 J (Q3/V) and l' stands for the kinematic viscosity. 

In the opposite case P > 1, the critical point r = 0 lies outside the electrode. All 
the surface streamlines begin outside the electrode territory and it is necessary to 
know the coordinates of their intersections with the electrode perimeter. The radii 
/"0' rj of these points, and the corresponding lengths L of the surface streamlines 
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follow from simple considerations, see Fig. 5, 

ri,o/R = {3 cos (<p) ± ,,/(l - {32sin2(<p)), 

L = ro(<P) - ri(<P) = 2 v'(1 - {32 sin2 (<p)). 

(35) 

(36) 

The values <P = ± <Po, for which it is {32 sin2 (<p) = 1, correspond to the limit stream
lines which only touch the electrode perimeter. 

By successively using the outlined systematic approach, the calculation proceeds 
in the following steps: 

and finally: 

e = <P, x = r - ri ( <p), q = Ar, Jl = r, 

Q(e) = J~(9) ql/2(X) Jl3/2(X) dx = tAl/2[r!(e) - r~(e)] , (37) 

xE/1tR2 = -- - H({3) 1 (A)1/3 
r(4/3) 3 

(38) 

<1>0 
FIG. 5 

Circular electrode in axisymmetric forward 
flow region 
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with 

rcH(fi) = J~o [(fie + )(1 - fi 2s))3 - (fic - )(1 - fi 2s))3]2/3 de = 

= 22!3 J~o (t ,- fi 2s)!!3 (3fi2 + 1 - 4fi2~2fJ de = 

2415 

(39) 

In these integrals, sand c stand for sin (e) and cos (e), respectively. It is apparent 
from the last expression that, for fi ~ 00, the result becomes identical to the formula 
for the circular electrode in simple shear flow, with the local shear rate q specified 
at the centre of the electrode, i.e. at r = fiR, where q(r)!R = Afi. For the other 
limiting case, fi = I, the expected result H(l) = 1 can be easily checked. 

The following empirical formula for the correcting factor H, 

{ I; fi<1'08 
H(fi) = 0'884fil!3(l + 0'12fi- 2 ) ; fi> 1·08 

(40) 

can be safely used within the accuracy of three decimal digits. 

CONCLUSIONS 

The simplifying assumptions, commonly applied in the theory of two-dimensional 
concentration boundary layer, allow us to develop rather general three-dimensional 
theory which is based on the knowledge of the surface field of velocity gradients 
in the Euclidean space. As a resuJ.t, the analytic predictions are given both for the 
local and total diffusion fluxes. 

The theory is demonstrated by calculC;lting the total fluxes to a circular electrodif
fusion electrode under various flow conditions. Less trivial case of a circular elec
trode, placed eccentrically in the rotating disk body, is analyzed in another paper9. 

SYMBOLS 

A 
c 

Co 

D 
E 
h 

h!,h2 
fE' fw 

L 
.V 

normal flow coefficient 
concentration of depolarizer 
initial concentration of de polarizer 
diffusivity 
total electrode surface 
distance between coaxial disks, Fig. 4 
length and width of a strip electrode 
macroscopic flux to an electrode, E, or its segment, W 
geodesic length of surface streamline 
inert neighbourhood of electrode 
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r 

z 
ct 

Ii 
J 
e 

velocity gradient at solid surface and its magnitude 
components of velocity gradient 
kernel of the generalized Lighthill transformation 
radial coordinate 
radial coordinates of the input and output points on surface streamlines 
radius of a circular electrode 
longitudinal and normal velocity components 
x-coordinates of the input and output points on surface streamlines 
surface of an electrode segment 
normal coordinate 
angle of the cone in cone-and-plate configuration, Fig. 4 
geometric simplex 
diffusion thickness 
streamline coordinate 
modified mass-transfer coefficients 
metric coefficient for a coordinate system (z, x, e), Eq. (2) 
angular polar coordinate 
tP-coordinates of the central tangents to a circle, Fig. 5 
angular speed of rotation 

REFERENCES 

I. Leveque M. A.: Ann. Mines 12, 201 (1928). 
2. Lighthill M. J.: Proc. Roy. Soc. 202, 359 (1950). 
3. Newman J.: Ind. Eng. Chern. 60, 12 (1968). 

Wein 

4. Hanratty T. J., Campbell J. A. in: Fluid Mechanics Measurements (R. J. Goldstein, Ed.). 
Hemisphere Pub!., Washington 1983. 

5. Nakoryakov V. E., Burdukov A. P., Kashinsky O. N., Geshev P. I.: Electrodiffusion Method 
of Inl'estigation of Turbulent Flows (in Russian). Institute of Thermophysics, Novosibirsk 1986. 

6. Pokryvaylo N. A .. Wein 0., Kovalevskaya N. D.: EI,ctrodiffusion Diagnostics of Flow in Sus-
pensions and Polymer Solutions (in Russian). Nauka i Tekhnika, Minsk 1988. 

7. Wein 0., Sobolik V.: Collect. Czech. Chern. Commun. 52, 2169 (1987). 
8. Wein 0., Sobolik V.: Collect.. Czech. Chern. Commun. 54, 3043 (1989). 
9. Sobolik V., Wein 0.: Unpublished results. 

Translated by the author. 

Collect. Czech. Chem. Commun. (Vol. 55) (1990) 




